# CAVAN McLAUGHLIN & COSMIC PI FIND 4 AS CIRCLE **AREA OF SQUARE**

(179th Method on Cosmic Pi)

## R.D. Sarva Jagannadha Reddy rsjreddy134194@gmail.com

#### **Abstract**

The geometrical constant Pi, is wrongly considered as transcendental number. No doubt 3.14159265358.... is transcendental but it is not Pi number. Thus squaring a circle or circling a square are unfortunately have been said as unsolved geometrical problems. With the discovery of true Pi, called Cosmic Pi equal to 3.14644660941... both squaring a circle and circling a square have become no more unsolved geometrical problems.

Keywords: Circle, Square, Pi

#### Introduction

The concept **squaring a circle** means constructing a square whose area is equal to the area of a given circle. Here, we have to find out a side of the square using a straight edge and compass only. The second concept circling a **square** means constructing a circle whose area is equal to the area of a given square. Here we have **to find out a radius** of circle.

In this paper we construct a **square first** and whose side (a) is 2. So, its area is equal to  $a^2 = 2 \times 2 = 4$ . In other words, we have to find out a radius. Secondly, we must know the true  $\pi$  value. The true  $\pi$  value is also the exact  $\pi$ value. From the earlier 178 methods spanning 19 years of study, the true  $\pi$ value is found and confirmed. It is Cosmic  $\pi$  and is equal to

$$\frac{14 - \sqrt{2}}{4} = 3.14644660941...$$
 So, we have to finally construct with straight

edge and compass a circle whose area is equal to the area of the square ABCD i.e., 4 square units. The formula for finding area of the circle is  $\pi r^2$ . We know the true  $\pi = \frac{14 - \sqrt{2}}{4}$ . The unknown one is radius and we have to find out. This paper has seen the day of light because of the **idea** of Dr. Cavan McLaughlin (The mushroom.net, Quadrature of Circle). Hence, this author is grateful to him.

# **Procedure**

- 1. Large square = ABCD, side = 2, Area =  $2 \times 2 = 4$
- 2. Small square =  $1/4^{th}$  of ABCD.

$$=$$
 AGOE, Side  $=$  1

3. Inscribe a circle in AGOE square.



4. Center = N, Radius = 
$$JN = \frac{1}{2}$$

$$5. JS = Chord = \frac{\sqrt{2}}{2}$$

6. 
$$NL = Radius = \frac{1}{2}$$

7. 
$$NE = Diagonal = \frac{\sqrt{2}}{2}, NM = ME = \frac{\sqrt{2}}{4}$$

8. 
$$LM = Radius - NM = \frac{1}{2} - \frac{\sqrt{2}}{4} = \frac{2 - \sqrt{2}}{4} \text{ So}, \quad LM = \frac{2 - \sqrt{2}}{4}$$

9. Mark JP which is equal to LM. So, 
$$JP = LM = \frac{2 - \sqrt{2}}{4}$$

10. 
$$JK = Diameter = 1$$

11. KP = Diameter – JP = 1 – JP = 
$$1 - \frac{2 - \sqrt{2}}{4} = \frac{2 + \sqrt{2}}{4}$$

So, 
$$KP = \frac{2 + \sqrt{2}}{4}$$

12. Bisect KP twice

$$= KP \to PQ + QK \to QR + RK$$
$$= \frac{2 + \sqrt{2}}{4} \to \frac{2 + \sqrt{2}}{8} \to \frac{2 + \sqrt{2}}{16}$$

So, 
$$RK = \frac{2 + \sqrt{2}}{16}$$

X W U V T

13. 
$$JR = Diameter - RK$$

$$=1-\frac{2+\sqrt{2}}{16}=\frac{14-\sqrt{2}}{16}$$

So, 
$$JR = \frac{14 - \sqrt{2}}{16}$$

#### Part – II: How to find out the required radius?

14. In this step we try to find out a line segment which is a radius equal to

$$\sqrt{\frac{4}{\pi}}$$
 . Why?

Area of Circle =  $\pi r^2$  = Area of ABCD square = 4

$$\pi r^2 = 4$$

$$r^2 = \frac{4}{\pi}$$
, then  $r = \sqrt{\frac{4}{\pi}}$ 

We know the true  $\pi$  value  $=\frac{14-\sqrt{2}}{4}$ 

Then required radius 
$$=\sqrt{\frac{4}{14-\sqrt{2}}} = \sqrt{\frac{16}{14-\sqrt{2}}} = \frac{4}{\sqrt{14-\sqrt{2}}}$$

15. OF = 1

JR of Small square AGOE = OT of small square OFCH

16. 
$$OT = JR = \frac{14 - \sqrt{2}}{16}$$

17. 
$$TF = OF - OT = 1 - \frac{14 - \sqrt{2}}{16} = \frac{2 + \sqrt{2}}{16}$$



With center V draw a semic circle on OF.



- 19. Draw a perpendicular line on OF at T which meets the semicircle at U.
- 20. Length of perpendicular line TU

$$=\sqrt{OT \times TF}$$
 (Altitude theorem)

$$= \sqrt{\left(\frac{14 - \sqrt{2}}{16}\right) \times \left(\frac{2 + \sqrt{2}}{16}\right)} = \frac{\sqrt{26 + 12\sqrt{2}}}{16}$$

- 21. Join U and O
- 22. To get UO apply Pythagorean theorem.

$$OT = \frac{14 - \sqrt{2}}{16} \quad TU = \frac{\sqrt{26 + 12\sqrt{2}}}{16}$$

$$OU = \sqrt{\left(OT\right)^2 + \left(TU\right)^2} = \sqrt{\left(\frac{14 - \sqrt{2}}{16}\right)^2 + \left(\frac{\sqrt{26 + 12\sqrt{2}}}{16}\right)^2} = \frac{\sqrt{14 - \sqrt{2}}}{4}$$

23. V = mid point of OF = 1, OV = VF = 
$$\frac{1}{2}$$

- 24. Draw a perpendicular line on OF at mid point V which meets UO at W.
- 25. Apply the concept of **similar triangles** to get OW.

$$OW = \frac{OV \times OU}{OT} = \frac{\frac{1}{2} \times \frac{\sqrt{14 - \sqrt{2}}}{4}}{\frac{14 - \sqrt{2}}{16}} = \frac{2}{\sqrt{14 - \sqrt{2}}}$$

26. Mark OW length on OH = OX

So, 
$$OX = \frac{2}{\sqrt{14 - \sqrt{2}}}$$
 and add OX again = XY



$$XY = \frac{2}{\sqrt{14 - \sqrt{2}}}$$

2 times of OW = OY

Finally, 
$$OX + XY = \frac{4}{\sqrt{14 - \sqrt{2}}} = OY$$

### Part III: Large circle of its area equal to ABCD square = 4

27. Area of large circle =  $\pi r^2$ 

Where Radius = 
$$r = OY = \frac{4}{\sqrt{14 - \sqrt{2}}}$$
 and

$$\pi = \frac{14 - \sqrt{2}}{4}$$

28. Area of ABCD square =  $side \times side = 2 \times 2 = 4$ Area of large circle

$$\Box r^2 = \frac{14 - \sqrt{2}}{4} \times \left(\frac{4}{\sqrt{14 - \sqrt{2}}}\right)^2 = 4$$



Finally, we obtain now the area of the circle equal to 4 which is the same area of ABCD square. It means the **circling a square is done**.

### Conclusion

In this paper the area of the circle equal to 4 is obtained finally which is the area of square whose side is 2.